
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 305 (2007) 289–297

www.elsevier.com/locate/jsvi
Short Communication

Concerning the cause of instability in time-stepping boundary
element methods applied to the exterior acoustic problem

H. Wanga,�, D.J. Henwoodb, P.J. Harrisb, R. Chakrabartib

aCollege of Physical and Environmental Oceanography and Physical Oceanography Laboratory,

Ocean University of China, Qingdao 266100, PR China
bSchool of Computing and Mathematical Sciences, University of Brighton, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK

Received 23 October 2005; received in revised form 11 May 2006; accepted 3 March 2007
Abstract

The boundary element method (BEM) in its simple form when solving the exterior acoustic problem in the frequency

domain has difficulties at the frequencies of internal resonances of the closed structure. The corresponding time domain

form of the exterior problem often exhibits instabilities in the time-stepping process. The link between these two features is

investigated by relating the eigenvalues of the iterating matrix of the time-stepping process to damped frequencies.

Numerical evidence from a problem with an analytic solution, and from a loudspeaker response are given. The suggested

link implies that instability comes from numerical errors super-imposed on a more fundamental problem and may be best

tackled through a time domain technique corresponding to the methods already available in the frequency domain.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The background concern of this short communication is the numerical prediction of the excess acoustic
pressure, f, exterior to a closed vibrating surface in both the time and frequency domains. Working in the time
domain requires solving the (linear) wave equation, and the instability referred to is the result of matrix
iteration in time-stepping and shows up in the time solution as an increasing response developing after a
period of quiet—even though no excitation is applied. The discussion is not directly relevant to general
element methods in other contexts such as the nonlinear transient analysis of engineering structures.

A common method of solving the exterior acoustic problem in the frequency domain is by using Helmholtz’
equation, converting to a boundary integral equation (BIE) and then applying an element discretisation, to
become the boundary element method (BEM). A well-known difficulty in the simplest form of the BEM
occurs at the set of frequencies at which the interior homogeneous problem has non-zero solutions, [1]. These
frequencies are referred to in this communication as f d . Various methods for creating a modified equation
with a solution at all frequencies have been devised, e.g. Ref. [1], or the CHIEF method of Schenck [2].
Without a modified form the BEM cannot be relied on, since it is not possible to predict in advance where the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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frequencies f d occur for a general structure. The modified form has led to an acceptably robust method for the
exterior problem up to a reasonably high frequency.

The inverse Fourier transform applied to the BIE gives the time domain version, referred to as the retarded
potential integral equation (RPIE), which when discretised leads to a time-stepping scheme. Instability is well
known and an analysis of various averaging methods to stabilise the process is given by Davies and Duncan
[3]. Walker et al. [4] discusses stability through the eigenvalues of an single iterative matrix, see Section 3 of
this paper, but do not make the link with internal resonances which we see as crucial. The connection between
instability and internal resonances in scattering problems has been recognised, e.g. Refs. [5,6]. Smith suggested
that it could be rectified by an averaging of the time steps; Ergin advocates the more radical action of
modifying of the RPIE by the Burton and Miller method which seems to us to be a better approach, going to
the heart of the problem. Although acoustics is mentioned in the papers, the connection between internal
resonances and instability has not been generally recognised in exterior acoustic problems.

Numerical evidence is given to establish the link through relating each eigenvalue of an iterative matrix with
a particular frequency. The implication of the link on attempting to find a cure for instability is examined.

2. The exterior problem in the frequency domain

Helmholtz’ equation is converted into a BIE by introducing a fundamental solution, G, of Helmholtz’
equation (commonly called Green’s function). In three dimensions G at frequency o is given by

Gkðp; qÞ ¼
1

4pR
expðjkRÞ; j ¼

ffiffiffiffiffiffiffi
�1
p

, (1)

where the wavenumber k ¼ o=c, c is the speed of sound, and R ¼ jp� qj is the distance between a (source)
point on the surface q and the (observation) point p.

Omitting details, which may be found in many sources, e.g. Ref. [1], Gk and f are combined into an integral
equation for f at p,

afðp;oÞ ¼
Z

S

fðq;oÞ
qGkðp; qÞ

qnq

� Gkðp; qÞ
qfðq;oÞ

qnq

� �
dSq. (2)

Here S is the smooth surface of a structure and

a ¼

1 if p is in the exterior;

1=2 if p is on S;

0 if p is in the interior:

8><
>:

The normal derivative qf=qnq ¼ v is the given surface condition.
The BEM discretises Eq. (2), for each k, into

afðpÞ ¼ mk/� lkv, (3)

where /, v are vectors of the values of f; v at chosen points (nodes) on the boundary, and mk; lk are vectors
computed from integrating Gk with chosen element shape functions on the boundary elements. (In the
numerical evidence shown later, the simplest, constant approximation, was used and the nodes were chosen at
the element mid-points.)

The boundary condition supplies v; / is calculated by applying the collocation method to Eq. (3) bringing p

to each node in turn. This is the initial stage of the BEM and is the significant part of the BEM needed for the
discussion of instability in the time domain (the final stage is to again apply Eq. (3), where now p is a general
point in the exterior, but this will not concern us). The initial stage has a matrix form

ðMk �
1
2

IÞ/ ¼ Lkv, (4)

where Mk;Lk are computed similarly to mk; lk.
There is a difficulty in solving Eq. (4) in that ðMk �

1
2

IÞ is singular at the set of frequencies, f d , mentioned
earlier.
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3. The exterior problem in the time domain

The inverse Fourier transform applied to Eq. (2) gives the time domain version. As a result of G being
frequency dependent, as shown in Eq. (1), it becomes modified into causing a time delay. Again omitting
details of the well-established derivation, see e.g. Ref. [7]

afðp; tÞ ¼ �
1

4p

Z
S

1

R2

qR

qnq

fðq; tÞ þ
R

c

qfðq; tÞ
qt

� �
þ

1

R

qfðq; tÞ
qnq

� �
dSq, (5)

where t ¼ t� ðR=cÞ is the retarded time at which sound must start out at q in order to reach p at time t. The
computation is divided into two stages in a similar manner to the frequency domain version. The first stage is
to obtain the initially unknown f at the chosen nodal points on the surface, before using them to obtain f at
an exterior point.

Eq. (5) is discretised into a set of linear equations, which is similar with the frequency domain Eq. (2) except
that the pressure over a structure at a sequence of time levels is needed in order to advance the solution
through one time step. Details are given in Ref. [8].

In order to predict the time behaviour in the exterior region the boundary pressures on the surface have to
be predicted in the same way that Eq. (4) has to be used before Eq. (3) in the frequency domain. The time
domain form of Eq. (4) is

/i ¼
XN
n¼1

DðnÞ/i�n þ yi. (6)

The vector /i contains the values of f at the M chosen nodal points and at the time iDt. Dt is a suitably
chosen time step, and i is the iteration count. The number of time steps required to progress the computation
to the next time level is N, where NDt just covers the time interval needed for sound from the point on S

furthest from p to reach q. The matrices DðnÞ come from the BEM, for details see Ref. [8]. Finally, yi comes
from the given boundary values of qf=qnq.

This is the usual form given in the literature [9], but for the purposes of analysing stability, this may be
written as a (large) iterative scheme:

Ui ¼ HUi�1 þ gi, (7)

where

Ui ¼

/i�Nþ1

/i�Nþ2

..

.

/i�1

/i

2
66666664

3
77777775
; H ¼

0 I 0 . . . 0

0 0 I . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . I

DðNÞ DðN�1Þ DðN�2Þ . . . Dð1Þ

2
6666664

3
7777775
; gi ¼

0

0

..

.

0

yi

2
66666664

3
77777775
. (8)

The first M � 1 rows merely state that /i ¼ /i, and the last repeats Eq. (6). Multiplying by the matrix H

upgrades a set of surface values of f at the structure node points, 1; 2; . . .M, and at the set of times
ði �NÞDt; ði �N þ 1ÞDt; . . . ði � 1ÞDt. In particular the homogeneous case where gi ¼ 0, i.e. after the forcing
function has ceased to act, will be considered.

Ui ¼ HUi�1. (9)

4. A look at the structure of the eigensystem of H

A single, representative eigenvalue and corresponding eigenvector are considered in order to examine the
step-wise propagation in time. The results will be relevant for the eigensystem as a whole and since collectively
they form a basis for the solution from any start, they will inform about the general solution of the
homogeneous equation.
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Suppose l ¼ r expðjyÞ and U are an eigenvalue and vector of the iterative matrix H, i.e.

HU ¼ lU. (10)

Following the NM � 1 vector structure of U described in Eq. (8), U may be partitioned into N sets of M

element values,

UT ¼ ½uT1 ; u
T
2 ; . . . u

T
N�,

where ui is a set of nodal values at a fixed time, iDt. In full this is

0 I 0 . . . 0

0 0 I . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . I

DðNÞ DðN�1Þ DðN�2Þ . . . Dð1Þ

2
6666664

3
7777775

u1

u2

..

.

uN�1

uN

2
66666664

3
77777775
¼ l

u1

u2

..

.

uN�1

uN

2
66666664

3
77777775
. (11)

From the matrix rows of Eq. (11)

u2 ¼ lu1; u3 ¼ lu2 ¼ l2u1; . . . ; uN ¼ luN�1 ¼ lN�1u1

and the last row is

DðNÞu1 þDðN�1Þu2 þ � � � þDð1ÞuN ¼ luN.

The left-hand side of this equation, using the definition of Eq. (6) with yi ¼ 0, forms the set of boundary
pressures at the next time level, say uNþ1.

Thus two successive pressure sets with the form of U are

Ui�1 ¼

u1

u2

..

.

uN�1

uN

2
66666664

3
77777775
; Ui ¼

u2

u3

..

.

uN

uNþ1

2
66666664

3
77777775
¼ l

u1

u2

..

.

uN�1

uN

2
66666664

3
77777775
,

i.e. satisfy

Ui ¼ HUi�1 ¼ lUi�1. (12)

This implies that from u1 the pressures at subsequent times may be generated by the simple iteration

ui ¼ lui�1. (13)

Let

u1 ¼ ½b1 expðja1Þ; b2 expðja2Þ; . . . ; bM expðjaMÞ�
T, (14)

then

uiþ1 ¼ liu1 ¼ ri½b1 exp jða1 þ iyÞ; b2 exp jða2 þ iyÞ; . . . ; bM exp jðaM þ iyÞ�T. (15)

Note that, since H is real, the eigenvalues and vectors either real or occur in conjugate pairs, so real pressures
may be taken from the real or imaginary part of Eq. (15),

ri½b1 cosða1 þ iyÞ; b2 cosða2 þ iyÞ; . . . ; bM cosðaM þ iyÞ�T

or ri½b1 sinða1 þ iyÞ; b2 sinða2 þ iyÞ; . . . ; bM sinðaM þ iyÞ�T.
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5. The time eigensystem related to frequencies

Eq. (15) shows that the effect of progressing through a time step Dt is to move the vector through an
angle y i.e.

at a rate of
y
Dt

radians per second

or
y

2pDt
Hz

or wavenumber
y

cDt
,

where c is the speed of sound. In this way a picture of the eigenvalues may be shown either as complex
numbers, see Fig. 1, or alternatively in a frequency form shown in Fig. 2. The values in the illustration come
from the problem with an analytic solution, described in Section 6.1. In the frequency form the y-axis is used
for the decay rate, r, which in the polar plot becomes the radius.

The association of eigenvalues with frequencies may be obtained more formally by considering the effect of
the Fourier transform on the sequence of vectors produced by the iterative scheme. From Eq. (13) and the
start of u1, the sequence

u1; lu1; l
2u1; l

3u1; . . .

is produced. Let this be hiu1; i ¼ 0; 1; 2; . . ., where hi ¼ li
¼ ½r expðjyÞ�i contains the variation with time and u1

is constant through the iteration process. At this stage we assume that ro1. Since the times iDt may be
thought of as samples from continuous time t, hi is sampled data from the continuous function

hðtÞ ¼ ½r expðjyÞ�t=Dt

¼ ½expð�aþ jyÞ�t=Dt where a ¼ � ln r

¼ exp �
a
Dt
þ j

y
Dt

� �
t

� �

defining f̂ as y=ð2pDtÞ and b as a=Dt

¼ expð�bþ j2pf̂ Þt.
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Fig. 1. Polar form ðr; yÞ of the eigenvalues l.
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The Fourier transform is

Hðf Þ ¼

Z 1
�1

hðtÞ expð�j2pftÞdt

¼

Z 1
0

expð�bþ j2pf̂ Þt expð�j2pftÞdt

¼

Z 1
0

expð�bþ j2pðf̂ � f ÞÞtdt

¼
1

b� j2pðf̂ � f Þ
. ð16Þ

A graph of the modulus of Hðf Þ is shown in Fig. 3 for the particular example f̂ ¼ 100Hz and for varying b.
Note that r is related to b by

r ¼ expð�DtbÞ so that b! 0) r! 1.

The appearance is of a typical damped resonance at 100Hz.
Notes: The first two notes explain the effect of using discrete samples of hðtÞ rather than the continuous

function.
1. The Nyquist criteria [10], which requires at least two sample points per cycle, is relevant here. The

corresponding highest frequency is f c ¼ 1=ð2DtÞ. That the frequency f̂ should be constrained in this way
requires that

f̂o
1

2Dt
)

y
ð2pDtÞ

o
1

2Dt
or yop. (17)

This removes an ambiguity in forming y from the complex number l (both y and �y occur as the
eigenvalues are in conjugate pairs).

As y increases from zero to p the corresponding frequency increases from zero to the Nyquist value f c.
2. The sampled frequencies resulting from the sampled time data have frequency step of 1=NDt, see

Ref. [10]. Thus they may not include exactly the damped resonance at f̂ derived from the eigenvalue.
Consequently even if f̂ is exactly a member of f d the discrete frequency data may not fall on the member of f d .
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3. If r ¼ 1 the amplitude of the oscillation does not decay but remains constant, which is clearly an
undamped resonance.

In Eq. (16) jHðf Þj has its largest value (the surface resonates) at 2pfDt ¼ y, i.e. f ¼ y=2pDt as before. Note
that as r! 1, jHðf Þj ! 1 and for r near 1 it has the appearance of an undamped resonance.

We suggest that the frequencies of these resonances are members of f d . Also that the eigenvalues of H which
have modulus � 1 come from these undamped resonances r ¼ 1 but are affected by averaging, rounding, or
numerical integration error.

Clearly if r41 the iteration process will be unstable and if ro1 then stable. A small change in r when r � 1
may tip a resonance over from being stable to unstable or vice versa.

In the next section numerical evidence is given to confirm the suggestion. The statement that ‘‘ r � 1’’ is not
precise in that no indication is given of how close to 1 is intended, but the message from the evidence is clear.

6. Numerical evidence that the frequencies having r � 1 are contained in f d

In all cases the boundary elements used to generate the 3D surfaces were axi-symmetric hoops generated by
straight line segments, and the pressure is assumed to be constant on each element.

6.1. An example with an analytical solution

The number of nodes (elements) was M ¼ 10, and Dt ¼ 0:07.
The analytic problem concerns the vibrating surface of a unit sphere with c taken as 1; the method of

separation of variables gives as basis functions, for a problem with symmetry in the j direction,

umðr; yÞ ¼ Pmðcos yÞJmðkrÞ; m ¼ 0; 1; 2; . . . .

Here y is the angular variation giving the mode shape and r is the polar. Pm; Jm are the Legendre polynomial
and spherical Bessel function of the first kind, of order m. For the homogeneous interior Dirichlet problem
(our case) the solutions are given by the zeros of JmðkaÞ where a is the radius of the sphere; these are examples
of f D. Values are given in Ref. [11, pp. 467/8]. The first two are:

m ¼ 0; k ¼ 3:1416 ðpÞ; P0 ¼ constant,

m ¼ 1; k ¼ 4:4934; P1 ¼ cos y.
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Fig. 5. Showing the simple form of frequency response of a loudspeaker together of the eigenvalues of the time solution.
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Fig. 4 is a magnified section of Fig. 2 with the analytic resonances added and indicated by circles. There is
good correspondence for the range shown, though the accuracy decreases as the frequency increases. Note that
only one computed eigenvalue in the range shown has modulus greater than one (the frequency � 9:5). The
eigenvector was also considered for the first two modes and they did correspond with the analytic shapes.

6.2. A loudspeaker model

The modelling of the exterior acoustic field from the vibration of a loudspeaker cone is used as a practical
example. A paper cone, of outer radius 15 cm, is from a mid-range unit, the details of which are given in a
conference paper [12]. Fig. 5 shows the simple BEM (without the Burton and Miller modification) estimation for
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the on axis sound pressure at 1.5m from the cone. The interior resonances clearly show up. The time domain
model uses 64 elements and Dt ¼ 0:00004 to form H and its eigenvalues. The related frequencies are marked by
dotted lines. Again the correspondence is convincing. The decibel measure of the pressure is given by

20� log 10ððabsðpressureÞÞ=ð2:0e� 5ÞÞ.

7. Conclusions

Interior resonances of a vibrating structure have long been known to cause difficulties in using the BEM in
solving the exterior acoustic problem in the frequency domain. Because the frequency and time domains are
equivalent, this same difficulty must be present in the time domain solution with the RPIE method. This is
confirmed in the communication through:
�
 Establishing that each eigenvalue of the iteration matrix of the discrete time solution is shown to relate to a
frequency of the Fourier transform of the time data.

�
 Evidence is given that the interior acoustic resonant frequencies of a structure appear in the time solution.

�
 The interior resonances appear in the time solution as eigenvalues with, if computed exactly, decay rate ¼ 1.
However numerical approximations may cause the decay rate to be o1 or 41, resulting in stability or
instability, respectively.

Rather than modifying the averaging process or time step, a more thorough approach to eliminating the
possible instability is to obtain a set of basis functions for the solution space of the homogeneous solution
which exclude the interior resonances, in a way related to the Burton and Miller or CHIEF method for the
frequency domain.
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